Journal of Catalysis 337 (2016) 293-302

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

CO_2 photoreduction with H_2O vapor on highly dispersed CeO_2/TiO_2 catalysts: Surface species and their reactivity

JOURNAL OF CATALYSIS

Yun Wang^{a,b}, Jie Zhao^{a,*}, Tianfu Wang^a, Yingxuan Li^a, Xiyou Li^{a,*}, Jiao Yin^a, Chuanyi Wang^{a,*}

^a Laboratory of Environmental Sciences and Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China ^b University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 7 November 2015 Revised 29 December 2015 Accepted 30 December 2015 Available online 2 March 2016

Keywords: CO₂ photoreduction Basic oxide CeO₂ CO₂ adsorption

ABSTRACT

Weak interaction between TiO₂ and CO₂ molecules is detrimental to CO₂ photoreduction. To alleviate this drawback, ceria is usually exploited as a basic promoter, but fundamental insights into the correlation of ceria-tuned CO₂ adsorption and the resulting activity of photoreduction are lacking. In this work, highly dispersed CeO₂/TiO₂ and bare TiO₂ catalysts were fabricated and their structural, surface, and optical properties and activity for CO₂ photoreduction were explored. Microcalorimetric measurement and in situ infrared spectroscopy were used to reveal the strengths and states of CO₂ adsorption and the course of photoreduction of CO_2 with H_2O vapor. Monodentate carbonate (m- CO_2^{3-}), bidentate carbonate $(b-CO_3^{2-})$, and bidentate bicarbonate $(b-HCO_3^{-})$ are found to be the main surface species for the coadsorption of CO₂ and H₂O on catalyst surfaces. The presence of CeO₂ containing Ce³⁺ strengthens the bonding of CO_2 with catalyst surfaces and increases the production of b- CO_3^{2-} and b- HCO_3^{-} species. Unlike m- CO_3^{2-} , b-CO₃²⁻ and b-HCO₃⁻ surface species could readily be transformed to surface CO₂⁻ in the presence of H₂O under simulated sunlight irradiation. This might be attributed to the fact that the CO₂ segment in the two species is bound to Ti/Ce atoms that have reductive capabilities under photoirradiation. In addition, the presence of CeO₂ containing Ce³⁺ facilitates photogenerated charge separation. As a result, ceria-tuned CO₂ adsorption and enhanced charge separation are jointly responsible for the increased activity of CeO₂/TiO₂ catalysts.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Photocatalytic reduction of CO₂ with H₂O vapor on chemically stable and environmentally benign TiO₂ is gaining increased interest because it is a promising "green chemistry" approach for the direct conversion of CO₂ to value-added fuels (CO, methane, methanol, etc.) driven by sunlight [1–3]. However, TiO₂ photocatalyst suffers from several disadvantages that ultimately lead to low reaction efficiency [4], including (1) low solar energy utilization due to its large band gap (3.2 eV for anatase TiO₂ and 3.0 for rutile TiO₂), (2) fast recombination of photogenerated electronhole pairs, and (3) weak interaction between CO₂ molecules and TiO₂ surfaces, leading to low coverage of reactive adsorbed species and difficult displacement of the reaction products and/or inactive intermediates by CO₂ molecules [3]. The former two limitations have been extensively addressed in the literature by metal (e.g., Pt, Au) coupling or nonmetal doping, mixed phase TiO₂ [5,6], p–n heterojunction construction, photosensitizer decoration, and defect production [7,8]. However, limited attention has been focused on the last one, which is also a key factor in CO_2 photoreduction efficiency [3,9–12].

The surface chemistry of CO₂ suggests that two types of surface species for the adsorption of CO_2 exist on the surface of TiO_2 , molecularly adsorbed CO_2 and surface carbonates [13,14]. They are easily desorbed from the clean and hydrated TiO₂ surfaces at room temperature due to low adsorption energy [13,15]. Recently, the use of basic additives to improve CO₂ adsorption has attracted some attention due to the fact that CO_2 is an acidic molecule [4]. Indeed, it has been found that alkali and alkaline earth metal additives such as MgO, Na₂CO₃, and NaOH exhibit positive effects on the photoreduction of CO₂ [3,9,10,16]. Meng et al. pointed out the modification of TiO₂ with NaOH can promote CO₂ chemisorption and subsequent activation, thereby resulting in highly effective conversion of CO₂ to CH₄ [9]. Rare earth metal oxides have been widely investigated as basic promoters. Besides promoting the adsorption of CO_2 [4,17], their addition could also provide several other benefits: (1) extending the light absorption of

^{*} Corresponding authors. Fax: +86 9913838957 (C. Wang).

E-mail addresses: Jiezhao@ms.xjb.ac.cn (J. Zhao), xiyouli@upc.edu.cn (X. Li), cywang@ms.xjb.ac.cn (C. Wang).

TiO₂-based catalysts to the visible region [18,19], (2) promoting photogenerated electron–hole pair separation at ceria–titania interfaces [20–22], (3) increasing the redox capability [23], and (4) tailoring surface states of TiO₂ [24] Considering these factors, rare earth metal oxides could be promising promoters for CO₂ photoreduction on TiO₂.

Ceria is an important representative of rare earth metal oxides, and a lot of effort has been made to apply CeO₂-TiO₂ composites for photocatalytic oxidation of various organic pollutants such as dyes, toluene [25-27], pesticides, acetaldehyde, or 4-chlorophenol in condensed phase [28,29]. For example, Muñoz-Batista et al. have done systematic studies on photocatalytic degeneration of toluene over ceria-titania composites, revealing degeneration kinetics, the role of CeO₂-TiO₂ interface contact, and g-C₃N₄ modification effect [24–26]. Based on previous studies, it can be concluded that ceria-titania catalysts are advantageous in photocatalytic oxidation of organic pollutants, as compared to bare TiO₂. Unfortunately, little research regarding the photocatalytic reduction of CO₂ over CeO₂-TiO₂ photocatalysts has been reported, except for studies by Wang et al. [18], Matějová et al. [28], and Jiao et al. [30]. Wang et al. [18] and Jiao et al. [30] mainly focused on the preparation of ordered macro- and meso-porous CeO₂-TiO₂ materials and attributed enhanced CO₂ photoreduction performance to their special composition and structure. The work by Matějová et al. [28] indicated that the introduction of ceria to TiO₂ adjusted the energies of electrons and holes of the catalysts, thereby enhancing the CO₂ photoreduction activity. These three studies focused on the relationship between the structural/electronic properties of the CeO₂-TiO₂ catalyst and its CO₂ photoreduction activity. To the best of our knowledge, however, the fundamental role of ceria-tuned CO₂ adsorption in its photoreduction has not yet been investigated.

Interface plays an important role in catalytic reactions [22,24,31]; e.g., the presence of interfaces obviously facilitates photogenerated charge separation in photocatalysis. Reducing particle size can effectively increase the interfacial areas, thus achieving desirable catalytic activity [24]. In view of this, highly dispersed CeO₂ on TiO₂ catalysts were prepared by a one-pot hydrothermal method in this work. Their structural, surface, and optical properties and activity for CO₂ photoreduction were systematically studied. Microcalorimetric measurement and in situ infrared spectroscopy (IR) were used to reveal the strengths and states of CO₂ adsorption and the course of photoreduction of CO₂ with H₂O vapor. The presence of CeO₂ tuned adsorptive states of CO₂ on catalyst surfaces in the presence of H₂O, resulting in increased production of bidentate carbonate $(b-CO_3^{2-})$ and bidentate bicarbonate $(b-HCO_3^{-})$ relative to monodentate carbonate $(m-CO_3^{2-})$ (shown in Scheme 1). The two surface species could be readily transformed to surface CO₂⁻ under simulated sunlight irradiation, which is a key intermediate for CO₂ photoreduction. The present work deepens the understanding of the role of ceria in CO₂ photoreduction at TiO₂ catalysts and the course of catalysis of CO₂ photoreduction in the presence of H₂O vapor.

2. Experimental

2.1. Synthesis of photocatalysts

Highly dispersed CeO₂ on TiO₂ photocatalysts was prepared through a one-pot hydrothermal method using titanium (IV) bis (ammonium lactate) dihydroxides (TALH; AR, Alfa Aesar) as Ti source and Ce(NO₃)₃·6H₂O (AR; Aladdin) as Ce source, respectively. In detail, a desired amount of TALH and Ce(NO₃)₃·6H₂O was dissolved into 120 mL of distilled water in the presence of 0.1 g polyethylene glycol (PEG, M_w = 6000; AR, Aladdin). The solution was transferred to a 175 mL Teflon-lined stainless steel autoclave, which was sealed and placed in an electric oven under stirring at 250 °C for 2 h with a heating rate of 2 °C/min. The as-formed slurry was filtered and washed with distilled water. The filter cake was dried at 80 °C for 4 h and then annealed in air at 450 °C for 2 h. The as-prepared CeO₂/TiO₂ photocatalysts with CeO₂ 10, 20, and 40 wt.% were denoted as 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂, respectively. For reference, the bare TiO₂ and CeO₂ were synthesized using the same method.

2.2. Photocatalyst characterization

The chemical compositions of prepared photocatalysts were analyzed by an ARL-9800 X-ray fluorescence spectrometer (XRF). The surface area and pore size were determined using an Autosorb-IQ-MP autosorption analyzer. Experiments were carried out at 77.3 K using N₂ as an adsorbate. The samples were degassed at 473 K for 2 h before the measurements. The pore size distributions were estimated by the BJH method using the desorption branch of the isotherms. X-ray diffraction (XRD) patterns of samples were collected in ambient atmosphere by a Bruker D8 powder diffractometer with Cu K α radiation (λ = 1.5408 Å) generated at 40 kV and 30 mA. Diffraction intensities were recorded from 20° to 80° at a rate of 6°/min. Transmission electron microscopy (TEM) characterization was performed on a JEOL-JEM 2100 electron microscope. X-ray photoelectron spectroscopy (XPS) was performed using a VG Microtech MT500 with an Mg K α X-ray source. The binding energy scale was corrected for surface charging using the C1s peak of contaminant carbon as a reference at 285.6 eV.

The UV–vis diffuse reflectance spectra (DRS) of photocatalysts over the range 200–800 nm were obtained on a UV–vis spectrophotometer (ShimadzuSolidSpec-3700DUV) with an integration sphere diffuse reflectance attachment. The photocurrent experiments were performed in three-electrode quartz cells with 0.1 M Na₂SO₄ electrolyte solution. A platinum electrode was used as the counter electrode, and saturated calomel electrodes (SCE) were used as the reference electrodes. Working electrodes were prepared as follows: ITO glasses were washed sequentially with distilled water and ethanol in an ultrasonic cleaner for 30 min. A quantity of 10 mg of catalysts was fixed on the pretreated ITO glasses to form photocatalyst-modified ITO electrodes. A 300 W xenon lamp was used as light source, which was 15 cm away from the working electrode.

Scheme 1. Schematic diagram of surface species for the coadsorption of CO₂ and H₂O on TiO₂ and/or CeO₂ surfaces [52,57].

Microcalorimetric measurement for CO_2 adsorption was performed on a Tian–Calvet heat-flux apparatus. A C-80 calorimeter (Setaram, France) was connected to a volumetric system equipped with a Baratron capacitance manometer (USA) for pressure measurements and gas handling. Prior to the microcalorimetric measurements, the catalysts were treated in air at 473 K for 2 h, followed by evacuation at the same temperature for 1 h.

In situ IR spectra for the coadsorption of CO₂ and H₂O before and after simulated sunlight irradiation were recorded with a Nicolet (IS50) spectrophotometer (MCT detector) in the range 4000– 1000 cm⁻¹ with a resolution of 4 cm⁻¹. The self-supporting wafer (15–20 mg) was annealed in an IR cell at 473 K in Ar for 2 h and evacuated at the same temperature for 1 h. After the IR cell was cooled, CO₂ and H₂O vapor were introduced into the cell with or without evacuation.

2.3. Photoactivity tests

The photocatalytic reduction of CO_2 with H_2O vapor was carried out in a reactor connected with a mechanical vacuum pump, using a 300 W xenon lamp as light source. For each test, 10 mg of tested catalyst powder was evenly deposited on a circular quartz plate with a diameter of 50 cm and then located inside the photoreactor perpendicular to the light beam. Gaseous CO_2 at 8 kPa was produced in situ by the reaction of NaHCO₃ with a H_2SO_4 solution (0.5 M). The photocatalytic activity of reduction of CO_2 with H_2O was performed at 298 K for 6 h in each run. The reaction products were monitored at a 60 min interval by an online gas chromatograph (Agilent Technology 4890 GC) equipped with a thermal conductivity detector (TCD) for product analysis of O_2 , CO, and CH₄ and a flame ionization detector (FID) for probable products of C_2 – C_5 hydrocarbons and methanol.

3. Results and discussion

3.1. Textural and structural properties

Fig. 1 shows the N₂ adsorption–desorption isotherms and pore size distribution curves of as-prepared TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂ photocatalysts. Their compositions, BET surface areas, and pore structure parameters are summarized in Table 1. All of the photocatalysts exhibit type-IV adsorption with a hysteresis loop of type H1, indicating the existence of mesopore structure. A relatively broad pore size distribution is observed for bare TiO₂, and it narrows down gradually as the CeO₂ content increases (shown in Fig. 1B). The surface area increases while pore diameter and pore volume decrease with increasing CeO₂ content. For example, surface area, pore diameter, and pore volume were measured to be 150.4 m² g⁻¹, 17.4 nm, and 0.7 cm³/g for TiO₂, whereas 196.1 m² g⁻¹, 4.3 nm, and 0.3 cm³/g were found for 0.4 CeO₂/TiO₂. Type and abundance of ions in hydrothermal processes have critical effects on the specific surface area, morphology, and

Fig. 1. N₂ adsorption–desorption isotherms (A) and pore size distribution curves (B) of the TiO₂ (a), 0.1 CeO₂/TiO₂ (b), 0.2 CeO₂/TiO₂ (c) and 0.4 CeO₂/TiO₂ (d) photocatalysts.

particle size of as-prepared materials [32,33]; e.g., Cheng et al. found that mineralizer NH₄Cl can decrease the crystalline size of TiO₂ but promotes agglomeration to form a hairy spheroid of particles in hydrothermal synthesis [33]. In the present work, the formation of TiO₂ is prior to that of CeO₂ in the hydrothermal process due to the comparatively lower decomposition temperature for TALH. Thus, the NO_3^- and Ce^{3+} ions derived from $Ce(NO_3)_3$ ionization could be adsorbed onto the surface of TiO₂ crystal nuclei. If they were selectively adsorbed on certain facets of the crystal nuclei, TiO₂ crystallite particles with specific morphology would be obtained [33]. If the adsorption was not selective, the adsorbed ions would hinder the growth of TiO₂ crystal nuclei [34,35], leading to a higher specific surface area and smaller pore diameter of the resultant samples. Furthermore, Ce(NO₃)₃ can be hypothesized to distribute throughout the interior of the pores of TiO₂ and subsequently decompose to CeO₂, resulting in decreased pore volume. Based on these analyses, the observed trends in specific surface area, pore diameter, and pore volume could be ascribed to the presence of $Ce(NO_3)_3$.

Table 1

 $Physical \ properties \ of \ the \ TiO_2, \ 0.1 \ CeO_2/TiO_2, \ 0.2 \ CeO_2/TiO_2, \ and \ 0.4 \ CeO_2/TiO_2 \ photocatalysts.$

Photocatalyst	Composition (wt.%)		$S_{\text{BET}} (m^2/g)^a$	$V_{\rm p}~({\rm cm^3/g})^{\rm b}$	Most probable pore size (nm)	Diameter (nm) ^c
	CeO ₂	TiO ₂				TiO ₂
TiO ₂	0	100	150.4	0.7	17.4	6.5
0.1 CeO ₂ /TiO ₂	8.7	91.3	161.7	0.6	12.4	6.4
$0.2 \text{ CeO}_2/\text{TiO}_2$	18.0	82.0	195.9	0.5	7.8	4.7
0.4 CeO ₂ /TiO ₂	37.2	62.8	196.1	0.3	4.3	_d

 a,b S_{BET} and V_{p} represent specific surface area and pore volume, respectively.

^c Particle size of TiO₂ as calculated according to Scherrer's equation.

^d Not calculated.

Fig. 2. XRD patterns of the TiO₂ (a), 0.1 CeO₂/TiO₂ (b), 0.2 CeO₂/TiO₂ (c) and 0.4 CeO₂/TiO₂ (d) photocatalysts calcined at 450 °C in air.

Fig. 2 shows XRD patterns of TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂. The diffraction peaks of 2θ at 25.3°, 37.8°, 40.8°, 53.9°, 55.1°, 62.7° and 75.1° are assigned to the (101), (004), (200), (105), (211), (204), and (219) crystal faces of anatase TiO₂, respectively [24]. Their intensities decrease with decreasing TiO_2 content in the CeO_2/TiO_2 catalysts. Based on the Scherrer equation using the (101) diffraction peak of TiO₂ anatase at 25.6° , the average crystallite size of anatase TiO₂ is calculated to be 6.5, 6.4, and 4.7 nm for TiO₂, 0.1 CeO₂/TiO₂, and 0.2 CeO₂/TiO₂, respectively. The characteristic peaks of crystalline CeO₂ are not observed for 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, or 0.4 CeO₂/TiO₂, except for a very weak peak at 28.6° for 0.4 CeO₂/TiO₂. To examine if CeO₂ is amorphous, bare CeO₂ was prepared by the same method and analyzed by XRD. Strong diffraction peaks for cubic fluorite CeO₂ with an average diameter of 29 nm are observed, indicating that crystalline CeO₂ can be obtained under the present preparation condition (Fig. S1 in the Supporting Information). It is well accepted that if the size of crystalline particles decreases to 4 nm, their diffraction peaks will be significantly broadened or even disappear [11]. On the other hand, it was reported that CeO₂ very likely displayed amorphous-like structure once the particle size was decreased to a certain extent [36]. A similar case was observed for metallic Cu particles [18]. Therefore, it could be assumed that the disappearing diffraction peaks are attributable to the small size of CeO₂ particles in CeO₂/TiO₂. Moreover, the particle size of CeO_2 in CeO_2/TiO_2 hybrids is significantly smaller than that in bare CeO₂, suggesting that TiO₂ has strong dispersion effects on CeO_2 . In other words, CeO_2 is highly dispersed on TiO_2 .

The TEM and HRTEM images of the representative photocatalyst 0.4 CeO₂/TiO₂ are shown in Fig. 3. As shown in Fig. 3A, spherical CeO₂/TiO₂ composite particles are observed with an average diameter of about 8 nm. The HRTEM image displays the crystalline fringes with an interplanar spacing of 0.35 nm, corresponding to the (101) plane of anatase TiO₂ crystal (Fig. 3B). Some studies showed that anatase TiO₂ is formed under weakly acidic, neutral, or basic conditions, while rutile TiO₂ is a main hydrothermal product under strongly acidic conditions [32]. Hence, the anatase TiO₂ was formed in the present work due to the weakly acidic experimental conditions. Furthermore, it is difficult to find the fringes for the cubic fluorite CeO₂, evidencing amorphous-like structure for CeO₂, attributed to the small size of CeO₂ particles.

3.2. XPS analysis

Fig. 4 shows Ti2*p*, Ce3*d*, and O1*s* core levels XPS spectra of TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, 0.4 CeO₂/TiO₂, and CeO₂ photocatalysts. No impurities other than contaminant carbon were detected (Fig. S2 in the Supporting Information). The binding energies of

Fig. 3. (A) TEM and (B) HRTEM images of the 0.4 CeO₂/TiO₂ photocatalyst.

Ti2 $p_{3/2}$ and $2p_{1/2}$ in TiO₂ are 458.4 and 464.4 eV (Fig. 4A), corresponding to typical characteristics of octahedrally coordinated Ti⁴⁺ ions [37]. The presence of CeO₂ does not change the Ti2p binding energies, in agreement with Liu et al. [29]. In addition, the binding energies for Ti³⁺2p core levels are only about 1.5 eV lower than those for Ti⁴⁺2p core levels [38], and thus their photoemission peaks often overlap. To examine if Ti³⁺ was present on the surface of TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂ photocatalysts, deconvolution of the peaks at 458.4 and 464.4 eV was tried but failed. This suggests that the amount of Ti³⁺ on the surface of photocatalysts is very limited.

As shown in Fig. 4B, Ce3*d* spectra are composed of two multiplets, labeled v and u, corresponding to the spin–orbit coupling of $3d_{5/2}$ and $3d_{3/2}$ [19,22,24,39]. The peaks denoted as v (u), v" (u"), and v"" (u"') are related to the photoemission from the Ce⁴⁺3*d* core level with Ce3*d*⁹4*f*²O2*p*⁴, Ce3*d*⁹4*f*¹O2*p*⁵, and Ce3*d*⁹4*f*⁰O2*p*⁶ final states, respectively. The transfer of electrons from O2*p* to Ce4*f* orbitals in the photoemission would increase the electron density of Ce⁴⁺, thus decreasing the attraction of the Ce nucleus to extranuclear electrons while enhancing the repulsion between electrons. This is why the binding energies for the Ce⁴⁺3*d* core level are decreased with the increased number of transferred electrons from O2*p* orbitals. The signals v₀ (u₀) and v' (u') are ascribed to photoemission from Ce³⁺ cations [22,40]. Based on these observations, it could be concluded that a mixture of Ce³⁺/Ce⁴⁺ oxidation

Fig. 4. (A) Ti 2p, (B) Ce 3d and (C) 0 1s core level XPS spectra of the TiO_2 (a), 0.1 CeO_2/TiO_2 (b), 0.2 CeO_2/TiO_2 (c), 0.4 CeO_2/TiO_2 (d) and CeO_2 (e) photocatalysts.

states exists on the surface of the CeO₂/TiO₂ catalysts, which is also revealed by the studies of Luo et al. [22]. In addition, based on the intensities of Ce³⁺3*d* photoemission peaks, the quantity of Ce³⁺ on the surface of CeO₂/TiO₂ catalysts is deemed to increase with the increase in CeO₂ content.

O1s XPS spectra are shown in Fig. 4C. The single O1s peak can be resolved into five peaks at about 529.3, 529.8, 530.3, 531.7, and 532.9 eV. The three peaks between 528 and 530.5 eV can be assigned to oxygen in anatase TiO₂ and/or CeO₂ crystal lattices [41,42]. The peaks between 531 and 533.eV correspond to the surface-adsorbed oxygen. The peak at 532.9 eV can be attributed to OH species [42]. The peak at about 531.2 eV could be ascribed to the oxygen in adsorbed CO₂, which is the most intense for bare CeO₂ due to its strong alkalinity.

The atomic fractions of Ti, Ce, and O on the surfaces of pure TiO₂, CeO₂, and CeO₂/TiO₂ catalysts derived from the deconvolution of XPS spectra are summarized in Table 2. The atomic fraction of oxygen on the surfaces of photocatalysts is higher than the theoretical value 66.7% for TiO₂ and CeO₂, which is likely due to the presence of adsorbed oxygen. The concentration of Ce³⁺ relative

Table 2

Summary of the XPS data for the TiO_2 , 0.1 CeO_2/TiO_2 , 0.2 CeO_2/TiO_2 , and 0.4 CeO_2/TiO_2 photocatalysts.

Samples	Surface a (%)	Surface atomic concentration (%)			Ce species (%)	
	Ti	Ce	0	Ce ³⁺	Ce ⁴⁺	
TiO ₂ 0.1 CeO ₂ /TiO ₂ 0.2 CeO ₂ /TiO ₂ 0.4 CeO ₂ /TiO ₂ CeO ₂	29.7 25.8 23.5 19.9 _ ^a	0 4.0 6.4 10.5 20.6	70.3 70.2 70.1 69.6 79.4	_ ^a 33.1 35.0 25.8 14.8	_ ^a 66.9 65.0 74.2 85.2	

^a Not detected.

to the combination of Ce^{4+} and Ce^{3+} is 33.1%, 35.0%, 25.8%, and 14.8% for 0.1 CeO_2/TiO_2 , 0.2 CeO_2/TiO_2 , 0.4 CeO_2/TiO_2 , and CeO_2 , respectively. Theoretical and experimental studies by Johnston-Peck et al. and Muñoz-Batista et al. showed that the ceria–titania interface favors the stabilization of Ce^{3+} [22,24,43,44], which could explain the reason that the Ce^{3+} ratio of CeO_2/TiO_2 hybrids is significantly higher than that of bare CeO_2 in the present work.

3.3. Optical properties

Fig. 5 displays the UV–vis diffuse reflectance spectra for asprepared TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂. TiO₂ is shown to have no significant absorption for visible light, owing to its large energy gap. However, the addition of CeO₂ extends the absorption of the resulting photocatalysts to visible light with the wavelength of 500 nm, which is also observed in previous reports [22,29,45]. This phenomenon can be attributed to the presence of reduced species such as Ce³⁺, as evidenced by XPS analysis. It is necessary here to elaborate the energy band structure of CeO₂ based on the theoretical calculations. CeO₂ has three valence bands, which are mainly composed of O2*p*, Ce4*f*, and Ce5*d* states

Fig. 5. (A) UV-vis diffuse reflectance spectra and (B) the optical adsorption edges of the TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂ and 0.4 CeO₂/TiO₂ photocatalysts.

[45]. The *p*-*f* and *p*-*d* band gaps exceed 3.1 eV, thus requiring ultraviolet light excitation. Although the *f*-*d* band gap energy of CeO₂ is about 2.4 eV [46–48], there is no visible-light absorption by pure CeO₂, due to the fact that the 4*f* orbital of Ce⁴⁺ is unoccupied. The presence of Ce³⁺ in CeO₂ will induce occupation of the 4*f* orbitals, thus allowing visible-light absorption via the transition of electrons from 4*f* to 5*d* orbitals. In addition, the intensities of visible-light absorption of CeO₂/TiO₂ hybrids should increase with Ce³⁺ quantity. However, it is found that visible-light absorption of 0.2 CeO₂/TiO₂ is weaker than that of 0.1 CeO₂/TiO₂. The abnormal observation is tentatively attributed to the specific composition, which might change the electron structure of Ce³⁺ in 0.2 CeO₂/TiO₂ [28], thus slightly enlarging the *f*-*d* band gap.

The energy band gap of as-prepared samples could be calculated using $(\alpha h\nu)^n = \kappa (h\nu - E_g)$, (where α is the absorption coefficient, κ is a parameter that is related to the effective masses associated with the valence and conduction bands, n is 1/2 for the direct transition, $h\nu$ is the absorption energy, and E_g is the band gap energy) [31]. Plotting $(\alpha h\nu)^{1/2}$ versus $h\nu$ based on the spectral response in Fig. 5A gives the extrapolated intercept corresponding to the E_g value, and the results are shown in Fig. 5B. The optical band energies of 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂ are calculated to be 2.52, 2.6, and 2.51 eV, respectively, lower than that of TiO₂ (2.98 eV), indicating the enhanced ability of the hybrid catalysts to absorb visible light.

To explore the separation efficiency of photoinduced electronhole pairs in the photocatalysts, transient photocurrent measurements were conducted, with the results being shown in Fig. 6. Each electrode exhibits a current response to light, and the current decreases rapidly as soon as the light is off. The photocurrent density is about 0.029 μ A cm⁻² for TiO₂ and increases after the addition of CeO₂. CeO₂ and TiO₂ have almost equivalent conduction band potential [19], while the valance band potential of CeO₂ is higher than that of TiO₂, according to theoretical calculations [46–48]. The presence of CeO_2 containing Ce^{3+} produces a new valance band-occupied 4*f* orbitals with the potential lower than that of TiO₂, as shown in Scheme 2 [22,45,30]. Consequentially, photogenerated holes of TiO₂ could readily be transferred to CeO₂ through ceria-titania interfaces, leading to spatial separation of the photogenerated charge carriers, thereby increasing electron lifetimes [22,30]. In addition, the photocurrent density increases with an increase in CeO₂ content and reaches a maximum at 20 wt.%. After that, it decreases with further increasing CeO₂ content. A similar phenomenon was also observed by Luo et al. [22], which was explained in terms of ceria-titania interfacial areas [24].

Fig. 6. Transient photocurrent curves for TiO_2 (a), 0.1 CeO_2/TiO_2 (b), 0.2 CeO_2/TiO_2 (c) and 0.4 CeO_2/TiO_2 (d) in Na_2SO_4 aqueous solution (0.1 M) under simulated sunlight at -0.500 V vs. saturated calomel electrode (SCE).

Scheme 2. Possible transfer of photogenerated charge carries at the ceria–titania interface under simulated solar light irradiation [22,45,48].

Fig. 7. Differential heat versus coverage for CO₂ adsorption at 300 K on the TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂ and 0.4 CeO₂/TiO₂ photocatalysts. Before measurements, the photocatalysts were calcined at 200 °C under vacuum.

3.4. Microcalorimetric adsorption and in situ FTIR studies

Microcalorimetric adsorption is a powerful tool for analyzing the interaction between reactants and catalyst surfaces [11,49]. Fig. 7 shows the results of microcalorimetric measurements for CO₂ adsorption on the surface of photocatalysts. The initial differential heat was measured to be about 29, 40, 45, and 49 kJ/mol on TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, and 0.4 CeO₂/TiO₂, respectively. The differential heat decreases with an increase in CO₂ coverage on the surface of photocatalysts. Moreover, it is clear that the differential heat vs. coverage curves are gradually raised with the increase of CeO₂ content. These results indicate that the presence of CeO₂ containing Ce³⁺ strengthens the interaction between photocatalyst surfaces and CO₂ molecules, and the degree of strengthening depends on the quantity of Ce³⁺ on the surfaces of photocatalysts, as indicated by XPS analysis. This is due to the fact that the Ce³⁺ has excess electrons localized in empty f orbitals, thus possessing relatively stronger basicity than CeO₂ and TiO₂ [50].

Fig. 8 displays in situ FTIR spectra for the coadsorption of CO_2 and H_2O on the surface of TiO_2 and 0.2 CeO_2/TiO_2 photocatalysts before and after simulated solar light irradiation. As for the coadsorption of CO_2 and H_2O on TiO_2 in the dark, four infrared (IR) peaks are observed at 1605, 1515, 1392, and 1342 cm⁻¹. The peaks at 1605 and 1342 cm⁻¹ can be assigned to the asymmetric and symmetric OCO stretches of bidentate carbonates (b- CO_3^{2-}), respectively [3,51–53]. Note that the 1605 cm⁻¹ peak is very broad, implying the possible existence of other surface species such as bidentate bicarbonate (b- HCO_3^{-}) with an IR absorption band at about 1629 cm⁻¹, as reported previously [53,54]. The peaks at 1510 and 1392 cm⁻¹ correspond to the asymmetric and symmetric OCO stretches of $m-CO_3^{2-}$ [51,53]. Comparing the IR spectra for the coadsorption of CO_2 and H_2O on 0.2 CeO_2/TiO_2 with those on TiO₂ in the dark, several differences are observed:

Fig. 8. In situ FTIR spectra for coadsorption of a 1:1 flux ratio mixture of CO_2 and H_2O vapor on TiO_2 (A) and 0.2 CeO_2/TiO_2 (B). The spectra were obtained after the exposure of TiO_2 and 0.2 CeO_2/TiO_2 at room temperature to CO_2 and H_2O vapor before and after simulated solar light irradiation.

- (1) The above-mentioned four peaks are red-shifted for the hybrid catalyst. For example, the band for asymmetric OCO stretches of $b-CO_3^{2-}$ shifts to 1590 cm⁻¹. As shown in Scheme 1, the CO₂ molecule is bonded to the surface oxygen atom of TiO₂ through its carbon atom, leading to the formation of surface m-CO₃²⁻ species [55]. If CO₂ is simultaneously bonded to the oxygen and Ti centers of TiO₂ through its carbon and oxygen, surface $b-CO_3^{2-}$ species will be formed. In the two adsorption structures, the CO₂ molecule accepts electrons from the surfaces, and the accepted electrons mainly occupy the lowest unoccupied molecular orbital (LUMO) of CO₂ molecules with anti-bonding characteristics [56]. Thus, the more transferred electrons, the weaker OCO stretches and the stronger adsorption bond. The addition of ceria to TiO₂ could enhance the basicity and electron density of the catalyst surfaces, thereby weakening OCO stretching vibration but strengthening interaction between CO₂ and catalyst surfaces [56]. This is in agreement with the results of microcalorimetric measurements for the adsorption of CO₂. It should be noted that the surface species for the adsorption of CO_2 on CeO_2 is similar to those on TiO_2 [57–59].
- (2) A distinguishable IR absorption band for b-HCO₃ species is observed at about 1623 cm⁻¹. The surface b-HCO₃ species is generated from the reaction of CO₂ and surface hydroxyls, which is derived from the dissociative adsorption of H₂O on the surfaces [52,60,61]. b-HCO₃ could be readily formed on the surface of 0.2 CeO₂/TiO₂, since the dissociative adsorption of H₂O is facilitated on basic surfaces [61]. For bare CeO₂ (Fig. S3 in the Supporting Information), m-CO₃²⁻, b-CO₃²⁻, and b-HCO₃ are the main surface species, similar to those on TiO₂ and 0.2 CeO₂/TiO₂. However, the production of b-HCO₃ is higher than that of m-CO₃²⁻ and b-CO₃²⁻, further suggesting that basic surfaces facilitate the reaction of CO₂ with H₂O.

(3) The main surface species is changed from $m-CO_3^{2-}$ on TiO₂ to $b-CO_3^{2-}$ and $b-HCO_3^{-}$ on 0.2 CeO_2/TiO_2 . Compared with $m-CO_3^{2-}$, the $b-CO_3^{2-}$ species has additional bonding between the oxygen in the CO₂ molecule and the metal center of oxides, as suggested in Scheme 1. It is well known that the binding of the oxygen in the CO₂ molecule to the coordinately unsaturated metal center is energetically favorable. The presence of Ce³⁺ on the surface of CeO₂ and at the interface would lead to coordinatively unsaturated Ce centers, thus facilitating the formation of $b-CO_3^{2-}$.

Under subsequent photoillumination, a new IR peak at 1254 cm^{-1} appears for both bare TiO₂ and CeO₂/TiO₂ catalysts, which can be assigned to the symmetric OCO stretching of carbonate (CO_2^-) . Specifically, the CO_2^- species on TiO_2 and CeO_2/TiO_2 catalysts is initially observed after 30 and 10 min of photoirradiation, respectively. With further increasing photoillumination time, the amount of CO₂ species gradually increases and holds steady after 2 h photoillumination. At the same time, a very weak peak at about 2144 cm⁻¹ for CO was monitored on the surface of 0.2 CeO₂/TiO₂ (shown in Fig. S2). The CO_2^- species was theoretically and experimentally verified by several research groups, with the possible configuration being shown in Scheme 1 [1,37,56,62]. Zhao et al. found that CO_2^- species could be formed in the coadsorption of CO₂ with H₂O on the surface of TiO₂ without photoillumination [37]. Liu et al. suggested that the formation of CO_2^- species depends on the surface properties of TiO₂ [1]. Combining our results, it could be assumed that the formation of CO₂⁻ surface species on catalyst surfaces is facilitated by photoillumination [62]. Moreover, the CO_2^- species is deemed to be a key intermediate in the photoreduction of CO₂. Based on theoretical analysis, when one of the C–O bonds in CO_2^- is cleaved to form C–Ti bonds, CO is then formed [63]. If CO_2^- is bonded to H on the surface, HCOOH is produced [63]. CH_4 is an ultimate product for CO₂ photoreduction, requiring multistep reduction. As such, CH₄ might be derived from intermediate products such as CO, HCOOH, CH₂O, or CH₃OH. Unfortunately, the characteristic IR peaks for HCOOH, CH₂O, CH₃OH, and CH₄ were not detected, likely due to low abundance of these products, with concentrations below the detection limit of FTIR instrumentation. It should be kept in mind that the reduction potential of electrons in the TiO₂ conduction band (\approx -0.5 V) is much lower than the theoretical thermodynamic requirements for the reduction of CO₂ to CO_2^- (-1.9 V) [2]. Thus, the observed CO_2^- on the surfaces of TiO₂ and 0.2 CeO₂/TiO₂ should not be directly derived from gaseous or physisorbed CO₂ molecules. Furthermore, the peak intensities of $b-CO_3^{2-}$ and $b-HCO_3^{-}$ decrease slightly with photoillumination time. If surface $b-CO_3^{2-}$ and $b-HCO_3^{-}$ are directly transformed to the gaseous products such as CO, CO₂ in the IR cell will be readsorbed onto liberated sites to form $b-HCO_3^-$ and $b-CO_3^{2-}$ species, and thus the peak intensities for them remain stable, in contrast to our observations. Based on this, it is speculated that $b-HCO_3^-$ and $b-CO_3^{2-}$ on the surface are transformed to surface CO_2^- species instead.

To verify this speculation, another infrared analysis for the coadsorption of CO_2 and H_2O on the surface of the $0.2 \ CeO_2/TiO_2$ photocatalyst was conducted. The experimental conditions are the same as in the above experiments, except that the IR cell was evacuated for 30 min after the exposure to CO_2 and H_2O vapor, which aims to remove the gaseous and physisorbed CO_2 and H_2O molecules. As shown in Fig. 9, the surface species on the surface of the 0.2 CeO_2/TiO_2 photocatalyst are not changed by evacuation. When the photoirradiation time is increased from 1 to 3 h, the peak intensities for $b-HCO_3^-$ and $b-CO_3^{2-}$ gradually decrease, while the peak intensity for CO_2^- increases. The peak at 1388 cm⁻¹ assigned to symmetric OCO stretches of surface $m-CO_3^{2-}$ species shows little change. The results indicate that both the $b-HCO_3^-$ and $b-CO_3^{2-}$ species can be converted to the surface CO_2^- species [64], while

Fig. 9. In situ FTIR spectra for coadsorption of a 1:1 flux ratio mixture of CO₂ and H₂O vapor on 0.2 CeO₂/TiO₂. The spectra were obtained after the exposure of 0.2 CeO₂/TiO₂ at room temperature to CO₂ and H₂O vapor followed by evacuation for 30 min before and after simulated solar light irradiation.

the m- CO_3^{2-} species is inactive under simulated sunlight irradiation. The valence and conduction bands of TiO₂ (or CeO₂) are mainly composed of O2*p* and Ti3*d* (or Ce5*d*) orbitals, respectively. Note that 4*f* orbitals could also be regarded as a valence band for CeO₂ containing Ce³⁺. Photogenerated holes with oxidative capability naturally locate on O2*p* and/or Ce³⁺4*f* orbitals as shown in Scheme 2, and photoinduced electrons with reductive capability located on Ti3*d* and Ce5*d* orbitals. Because the CO₂ segment in m-CO₃²⁻ surface species is only connected with oxygen atoms of ceria and titania, it is difficult for them to be reduced to CO₂⁻. However, the CO₂ segment in both b-HCO₃⁻ and b-CO₃²⁻ surface species is simultaneously bonded with oxygen and the Ti/Ce atom, enhancing the chance of being reduced to CO₂⁻ under photoillumination.

In order to further probe $b-CO_3^{2-}$ photochemical reactivity, the FTIR spectra for CO_2 adsorption on the surface of $0.2 \ CeO_2/TiO_2$ are supplied in Fig. 10. Unexpectedly, the peaks for $b-CO_3^{2-}$ species show little change, and the CO_2^{-} species is not observed under simulated solar light irradiation. The results suggest that the $b-CO_3^{2-}$ species is inactive without the presence of H₂O, in agreement with the theoretical calculation by Yin et al., which suggests that the presence of aqueous solutions can greatly decrease the energy barrier for the formation of CO_2^{-} species [60]. Besides, the energy barrier for the transfer of HCO₃ to CO_2^{-} is about 0.27 eV, significantly lower than that of 0.87 eV for $b-CO_3^{2-}$ to CO_2^{-} [56,60,63]. Based on these results, two possible routes for the conversion of surface $b-CO_3^{2-}$ to CO_2^{-} species in the presence of H₂O are proposed: (i) $b-CO_3^{2-}$ is activated by neighboring H₂O molecule on the surface, thus being transformed directly to CO_2^{-} species under light irradiation.

Fig. 10. In situ FTIR spectra for CO_2 adsorption on $0.2 CeO_2/TiO_2$. The spectra were obtained after the exposure of $0.2 CeO_2/TiO_2$ at room temperature to CO_2 followed by evacuation for 30 min before and after simulated solar light irradiation.

H₂O molecule could be bound to the oxygen of Ti–O–C in surface $b-CO_3^{2-}$ through hydrogen bonding interaction [13], thus weakening the O–C bond. Sequentially, the C–O bond would be easily cleaved to form CO_2^{-} species with the assistance of photogenerated electrons. (ii) The H₂O molecule could be dissociated to form surface hydroxyls and hydrogen on the surfaces [65,66]. Once the surface H is bonded to O of surface $b-CO_3^{2-}$, $b-HCO_3^{-}$ is then formed [54]. After that, the formed $b-HCO_3^{-}$ is converted to CO_2^{-} species under light irradiation. Based on the results of FTIR and the formed products of CO_2 photoreduction, possible reaction pathways are proposed as follows:

$$H_2 O \rightarrow H_{ads.} + O H_{ads.} \tag{1}$$

$$CO_2 + MO_2 \rightarrow CO_3^{2-} + MO^{2+}$$
 (M is denoted as Ti or Ce) (2)

$$CO_2 + OH + MO_2 \rightarrow HCO_3^- + MO_2^+ \tag{3}$$

$$\mathrm{HCO}_{3}^{-} + h\nu \to \mathrm{CO}_{2}^{-} + \mathrm{OH}_{\mathrm{ads.}} \tag{4}$$

$$CO_3^{2-} + MO^{2+} + H_{ads.} \rightarrow HCO_3^- + MO_2^+$$
 (5)

$$CO_3^{2-} + MO^{2+} + H_2O + h\nu \rightarrow CO_2^{-} + MO_2^{+} + H_2O$$
 (6)

$$\mathrm{CO}_{2}^{-} + \mathrm{MO}_{2}^{+} + h\nu \to \mathrm{CO} + \mathrm{MO}_{2} + \mathrm{O}_{\mathrm{ads.}}$$

$$\tag{7}$$

$$O_{ads.} + 2H \rightarrow H_2O \tag{8}$$

$$O_{ads.} + O_{ads.} \rightarrow O_2 \tag{9}$$

$$CO \xrightarrow{e^{-}} C_{ads.} \xrightarrow{H} CH \xrightarrow{H} CH_{3} \xrightarrow{H} CH_{4}.$$
(10)

3.5. Photoreduction of CO₂ in CO₂/H₂O (g)

The photocatalytic activities of TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/ TiO₂, 0.4 CeO₂/TiO₂, and CeO₂ catalysts were evaluated by the reduction of CO₂ with H₂O vapor under simulated sunlight irradiation (0.20 W cm⁻²). In addition to oxygen, CO and CH₄ were found to be the major CO₂ reduction products, consistent with previous reports [67,68]. Fig. 11 shows the evolution of the main products (CO and CH₄) of CO₂ reduction with H₂O as a function of irradiation time over the photocatalysts under simulated sunlight irradiation. The yields of increase with irradiation time from 1 to 6 h for all five tested photocatalysts. At 6 h, the yield of CO is 30.6, 39.0, 46.6, 25.0, and 11.4 μ mol g⁻¹, and the yield of CH₄ is 21.8, 19.4, 30.2, 20.6, and 8.8 µmol g⁻¹ for TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, 0.4 CeO₂/TiO₂, and CeO₂, respectively. In summary, the activity of photocatalysts increases with the increase of CeO₂ content and reaches maxima at 20 wt.% CeO₂ content. After that, the activity decreases with further increasing CeO₂ contents. The performance of bared TiO₂ is significantly higher than that of CeO₂ under simulated sunlight irradiation, suggesting that TiO₂ is the main active composition, while CeO_2 acts as a promoter in the CeO_2/TiO_2 photocatalysts.

In addition, three control experiments were performed: (1) irradiation of catalyst and H_2O vapor with visible light in the absence of CO_2 ; (2) visible-light irradiation of CO_2 and H_2O in the absence of catalyst; and (3) irradiation of catalyst and CO_2 without H_2O vapor. CO and CH_4 products were not monitored by gas phase analysis in the latter two experiments, confirming the photocatalytic conversion of CO_2 .

According to the microcalorimetric measurement and in situ FTIR results, it is reasonable to conclude that the presence of CeO₂ containing Ce³⁺ not only increases the ability to capture reactant CO₂ molecules on the catalyst surface, but also facilitates the

Fig. 11. Yields of CO (A) and CH₄ (B) products for CO₂ photoreduction as a function of irradiation time over the TiO₂, 0.1 CeO₂/TiO₂, 0.2 CeO₂/TiO₂, 0.4 CeO₂/TiO₂ and CeO₂ photocatalysts under simulated light irradiation.

production of b-HCO₃⁻ and b-CO₂²⁻ species that are active and could readily be transformed to CO_2^- intermediate in CO_2 photocatalytic reduction. Furthermore, the photogenerated charge separation efficiency of catalysts is obviously enhanced in CeO_2/TiO_2 hybrid catalysts, as evidenced by the results of transient photocurrent measurements. This could be responsible for the enhanced activity of CeO_2/TiO_2 hybrid catalysts with relatively low ceria content, such as 20%. On the other hand, because the intrinsic photocatalytic activity of as-prepared CeO_2 in the work is obviously lower than that of TiO₂, further increasing the ceria content in CeO_2/TiO_2 hybrid catalysts inevitably leads to a decrease in activity.

4. Conclusions

Highly dispersed CeO_2 -on-Ti O_2 photocatalysts were facilely prepared by a one-pot hydrothermal method. The addition of CeO_2 extends the light absorption of the resultant photocatalyst to the visible region and facilitates the photogenerated charge separation, which could be attributed to the presence of Ce^{3+} in CeO_2/TiO_2 hybrids.

Monodentate carbonate $(m-CO_3^{2-})$, bidentate carbonate $(b-CO_3^{2-})$, and bidentate bicarbonate $(b-HCO_3^{-})$ are found to be the main surface species for the coadsorption of CO₂ and H₂O on the surface of TiO₂ and CeO₂/TiO₂. The presence of CeO₂ containing Ce³⁺ strengthens the bonding of CO₂ with the photocatalyst's surface and increases the production of $b-CO_3^{2-}$ and $b-HCO_3^{-}$ surface species. Unlike $m-CO_3^{2-}$, both $b-CO_3^{2-}$ and $b-HCO_3^{-}$ surface species could be readily transformed to surface CO₂⁻ in the presence of H₂O under simulated sunlight irradiation. For the first time, it is experimentally demonstrated that the CO₂⁻ surface species is derived from $b-CO_3^{2-}$ and $b-HCO_3^{-}$ but not from gaseous and physisorbed CO₂ molecules.

The factor dominating the rate of CO_2 photoreduction under simulated sunlight irradiation is changed with increasing CeO_2

Acknowledgments

Financial support by the National Nature Science Foundation of China (Grant No. 21473248), the CAS Hundred Talents Program, the CAS-SAFEA International Partnership Program for Creative Research Teams, and the CAS "Western Light" Program (XBBS201408) is gratefully acknowledged.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jcat.2015.12.030.

References

- [1] L. Liu, H. Zhao, J.M. Andino, Y. Li, ACS Catal. 2 (2012) 1817–1828.
- [2] A. Corma, H. Garcia, J. Catal. 308 (2013) 168-175.
- L. Liu, C. Zhao, D. Pitts, H. Zhao, Y. Li, Catal. Sci. Technol. 4 (2014) 1539–1546.
 Y. Liu, S. Zhou, J. Li, Y. Wang, G. Jiang, Z. Zhao, B. Liu, X. Gong, A. Duan, J. Liu, Y.
- Wei, L. Zhang, Appl. Catal. B 168–169 (2015) 125–131.
 [5] D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M.
- Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12 (2013) 798–801.
- [6] J. Buckeridge, K.T. Butler, C.R.A. Catlow, A.J. Logsdail, D.O. Scanlon, S.A. Shevlin, S.M. Woodley, A.A. Sokol, A. Walsh, Chem. Mater. 27 (2015) 3844–3851.
- [7] B. Mei, A. Pougin, J. Strunk, J. Catal. 306 (2013) 184–189.
- [8] G. Halasi, I. Ugrai, F. Solymosi, J. Catal. 281 (2013) 184–185.
- [9] X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye, Chem. Commun. 50
- (2014) 11517–11519.
 [10] S. Xie, Y. Wang, Q. Zhang, W. Fan, W. Deng, Y. Wang, Chem. Commun. 49 (2013) 2451–2453.
- [11] J. Zhao, H. Chen, X. Tian, H. Zang, Y. Fu, J. Shen, J. Catal. 298 (2013) 161–169.
- [12] Q. Li, L. Zong, C. Li, J. Yang, Appl. Surf. Sci. 319 (2014) 16–20.
- [13] M.A. Henderson, Surf. Sci. 400 (1998) 203–219.
- [14] X. Lin, Z.T. Wang, I. Lyubinetsky, B.D. Kay, Z. Dohnalek, Phys. Chem. Chem. Phys. 15 (2013) 6190–6195.
- [15] R.S. Smith, Z. Li, L. Chen, Z. Dohnálek, B.D. Kay, J. Phys. Chem. B 118 (2014) 8054–8061.
- [16] L. Liu, C. Zhao, H. Zhao, D. Pitts, Y. Li, Chem. Commun. 49 (2013) 3664-3666.
- [17] B. Zhao, Y.X. Pan, C.J. Liu, Catal. Today 194 (2012) 60–64.
- [18] Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, L. Zhou, Appl. Catal. B 130–131 (2013) 277–284.
- [19] C. Gionco, M.C. Paganini, S. Agnoli, A.E. Reeder, E. Giamello, J. Mater. Chem. A 1 (2013) 10918–10926.
- [20] H. Eskandarloo, A. Badiei, M.A. Behnajady, Ind. Eng. Chem. Res. 53 (2014) 7847-7855.
- [21] R. Marschall, Adv. Funct. Mater. 24 (2014) 2421-2440.
- [22] S. Luo, T.D. Nguyen-Phan, A.C. Johnston-Peck, L. Barrio, S. Sallis, D.A. Arena, S. Kundu, W. Xu, L.F.J. Piper, E.A. Stach, D.E. Polyanskiy, E. Fujita, J.A. Rodriguez, S. D. Senanayake, J. Phys. Chem. C 19 (2015) 2669–2679.
- [23] R. Gillen, S.J. Clark, J. Robertson, Phys. Rev. B 87 (2013) 125116.
- [24] M.J. Muñoz-Batista, M.N. Gómez-Cerezo, A. Kubacka, D. Tudela, M. Fernández-García, ACS Catal. 4 (2014) 63–72.
- [25] M.J. Muñoz-Batista, A. Kubacka, M.N. Gómez-Cerezo, D. Tudela, M. Fernández-García, Appl. Catal. B 140–141 (2013) 626–635.
- [26] M.J. Muñoz-Batista, M. Fernández-García, A. Kubacka, Appl. Catal. B 164 (2015) 261–270.
- [27] M. Zeng, Y. Li, M. Mao, J. Bai, L. Ren, X. Zhao, ACS Catal. 5 (2015) 3278-3286.
- [28] L. Matějová, K. Kočí, M. Reli, L. Čapek, A. Hospodková, P. Peikertová, Z. Matěj, L. Obalová, A. Wach, P. Kuśtrowski, A. Kotarba, Appl. Catal. B 152–153 (2014) 172–183.
- [29] H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, Y. Su, J. Photochem. Photobiol. A 223 (2011) 157–164.
- [30] J. Jiao, Y. Wei, Z. Zhao, J. Liu, J. Li, A. Duan, G. Jiang, Ind. Eng. Chem. Res. 53 (2014) 17345–17354.
- [31] J. Saavedra, H.A. Doan, C.J. Pursell, L.C. Grabow, B.D. Chandler, Science 345 (2014) 1599–1602.
- [32] A. Testino, I.R. Bellobono, V. Buscaglia, C. Canevali, M. D'Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, J. Am. Chem. Soc. 129 (2007) 3564–3575.
- [33] H.M. Cheng, J.M. Ma, Z.G. Zhao, L.M. Qi, Chem. Mater. 7 (1995) 663-671.
- [34] J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 46 (2013) 1900-1909.

- [35] M.H. Yang, P.C. Chen, M.C. Tsai, T.T. Chen, I.C. Chang, H.T. Chiu, C.Y. Lee, CrystEngComm 16 (2014) 441–447.
- [36] L. Liu, F. Gao, H. Zhao, Y. Li, Appl. Catal. B 134–135 (2013) 349–358.
- [37] H. Zhao, L. Liu, J.M. Andino, Y. Li, J. Mater. Chem. A 1 (2013) 8209-8216.
- [38] J. Zhuang, S. Weng, W. Dai, P. Liu, Q. Liu, J. Phys. Chem. C 116 (2012) 25354– 25361.
- [39] J.P. Holgado, R. Alvarez, G. Munuera, Appl. Surf. Sci. 161 (2000) 301-315.
- [40] X. Gao, Y. Jiang, Y. Zhong, Z. Luo, K. Cen, J. Hazard. Mater. 174 (2010) 734.
- [41] G. Li, D. Zhang, J.C. Yu, Phys. Chem. Chem. Phys. 11 (2009) 3775-3782.
- [42] Z. Zhang, Z. Zhou, S. Nie, H. Wang, H. Peng, G. Li, K.J. Chen, Power Sources 267 (2014) 388–393.
- [43] J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Appl. Surf. Sci. 253 (2007) 8952–8961.
- [44] A.C. Johnston-Peck, S.D. Senanayake, J.J. Plata, S. Kundu, W. Xu, L. Barrio, J. Graciani, J.F. Sanz, R.M. Navarro, J.L.G. Fierro, E.A. Stach, J.A. Rodriguez, J. Phys. Chem. C 117 (2013) 14463–14471.
- [45] S. Kundu, J. Ciston, S.D. Senanayake, D.A. Arena, E. Fujita, D. Stacchiola, L. Barrio, R.M. Navarro, J.L.G. Fierro, J.A. Rodriguez, J. Phys. Chem. C 116 (2012) 14062–14070
- [46] P.J. Hay, R.L. Martin, J. Uddin, G.E. Scuseria, J. Chem. Phys. 125 (2006) 034712-7
- [47] A.V. Prokofiev, A.I. Shelykh, B.T. Melekh, J. Alloys Compd. 242 (1996) 41-44.
- [48] H. Jiang, P. Rinke, M. Scheffler, Phys. Rev. B 86 (2012) 125115-13.
- [49] J. Zhao, H. Chen, J. Xu, J. Shen, J. Phys. Chem. C 117 (2013) 10573-10580.
- [50] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Science 345 (2014) 546– 550.
- [51] G. Finos, S. Collins, G. Blanco, E. del Rio, J.M. Cíes, S. Bernal, A. Bonivardi, Catal. Today 180 (2012) 9–18.

- [52] J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Chem. Eng. J. 170 (2011) 471–481.
- [53] K. Pokrovski, K.T. Jung, A.T. Bell, Langmuir 17 (2001) 4297–4303.
- [54] L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C 118 (2014) 25016–25026.
- [55] M.M. Rodriguez, X. Peng, L. Liu, Y. Li, J.M. Andino, J. Phys. Chem. C 116 (2012) 19755–19764.
- [56] H. He, P. Zapol, L.A. Curtiss, J. Phys. Chem. C 114 (2010) 21474-21481.
- [57] P.M. Albrecht, D.E. Jiang, D.R. Mullins, J. Phys. Chem. C 118 (2014) 9042–9050.
 - [58] Z. Cheng, B.J. Sherman, C.S. Lo, J. Chem. Phys. 138 (2013) 014702-12.
 [59] K.R. Hahn, M. Iannuzzi, A.P. Seitsonen, J. Hutter, J. Phys. Chem. C 117 (2013)
 - [60] W.J. Yin, M. Krack, B. Wen, S.Y. Ma, L.M. Liu, J. Phys. Chem. Lett. 6 (2015) 2538-
 - 2545.
 - [61] D.C. Sorescu, J. Lee, W.A. Al-Saidi, K.D. Jordan, J. Chem. Phys. 137 (2012) 074704-16.
 - [62] S. Zhu, S. Liang, Y. Tong, X. An, J. Long, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 17 (2015) 9761–9770.
 - [63] H. He, P. Zapol, L.A. Curtiss, Energy Environ. Sci. 5 (2012) 6196-6205.
 - [64] N.M. Dimitrijevic, B.K. Vijayan, O.G. Poluektov, T. Rajh, K.A. Gray, H. He, P. Zapol, J. Am. Chem. Soc. 133 (2011) 3964–3971.
 - [65] C. Di Valentin, A. Tilocca, A. Selloni, T.J. Beck, A. Klust, M. Batzill, Y. Losovyj, U. Diebold, J. Am. Chem. Soc. 127 (2005) 9895–9903.
 - [66] P. Dementyev, K.H. Dostert, F. Ivars-Barceló, C.P. O'Brien, F. Mirabella, S. Schauermann, X. Li, J. Paier, J. Sauer, H.J. Freund, Angew. Chem. Int. Ed. 54 (2015) 13942–13946.
 - [67] X. Li, W. Li, Z. Zhuang, Y. Zhong, Q. Li, L. Wang, J. Phys. Chem. C 116 (2012) 16047–16053.
 - [68] Z. Zhang, Z. Wang, S.W. Cao, C. Xue, J. Phys. Chem. C 117 (2013) 25939–25947.